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ON THE EXISTENCE OF SOLUTIONS IN COUPLED SYSTEM OF
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Abstract. In the present work we discuss the existence of solutions for a system of nonlinear

fractional integro-differential equations with initial conditions. This system involving the Ca-

puto fractional derivative and Riemann−Liouville fractional integral. Our results are based on

a fixed point theorem of Schauder combined with the diagonalization method.
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1. Introduction

During the last two decades fractional calculus has started to appear with many important
applications in biology [1], physics [3, 4, 5, 6, 12] and chemistry [18]. As surveys for the theory
of fractional integration and differentiation we refer the reader to the books [13, 17, 20] and [22]
For more recent details about the theory of fractional dynamical systems and interpretations of
fractional integration and differentiation see [1, 2, 7, 8, 10, 13, 15, 16, 19] and [21]. For the basic
tools in fixed point theory necessary to obtain our result see [9, 20].
A. Arara et al. [1] have considered a class of boundary value problems involving Caputo fractional
derivative on the half line with using the diagonalization process.
This paper is concerned with the existence of solutions for coupled system of nonlinear fractional
integro–differential equation:

{
cDαixi(t) = tIγifi (t, xj(t)) + fi (t, xj(t)) , i, j = 1, 2, i 6= j, t > 0,

xi(0) = xi0, and xi(t) are bounded on [0, ∞),
(1)

where 1 < αi ≤ 2, cDαi are the Caputo fractional derivative, γi are real positive numbers, Iγ
i are

Remann−Liouville fractional integral and fi : [0, ∞)×R −→ R are given continuous functions.

2. Basic tools

We dedicate this section to recall and introduce some notations, definitions and preliminary
facts that will be used in the remainder of this paper [11, 17, 20, 22].
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Let In = [0, n], L1 (In, R) denote the Banach space of functions x : In −→ R that are Lebesgue
integrable with the norm

‖x‖L1 =

n∫

0

|x(t)|dt.

Recall that C (In, R) is the Banach space of continuous functions from the interval In in to R
endowed with uniform norm,

‖x‖n = max { |x(t)| : t ∈ In} ,

and C2 = C × C is the Banach space of continuous functions from the interval [0, n] in to R
endowed with uniform norm

‖(x1, x2)‖n = max
{ ‖x1‖n, ‖x2‖n : (x1, x2) ∈ C2, t ∈ In

}
.

The Arzela-Ascoli theorem and Schauder‘s fixed point theorem is used in this manuscript which
they have an important roll in this article and the reader can refer to references[9, 11].

Definitions of Caputo and Riemann−Liouville fractional derivative/integral and their relation
are given bellow.

Definition 2.1. For a function u defined on an interval [a, b], the Remann−Liouville fractional
integral of f of order α > 0 is defined by

Iα
a+x(t) =

1
Γ(α)

t∫

a

(t− s)α−1x(s) ds, t > a,

and Remann−Liouville fractional derivative of u of order α > 0 defined by

Dα
a+x(t) =

dn

dtn
{
In−α
a+ x(t)

}
,

where n−1 < α ≤ n while Caputo fractional derivative of x of order α > 0 defined by is defined
by

cDα
a+x(t) = In−α

a+

{
x(n)(t)

}
.

An important of relation among of Caputo fractional derivative and Riemann−Lioville frac-
tional derivative is the following expression

Dα
a+x(t) = cDα

a+x(t) +
n−1∑

j=1

x(j)(a)
Γ(j − α + 1)

(t− a)j−α. (2)

We denote cDα
a+x(t) as cDα

ax(t) and Iα
a+x(t) as Iα

a x(t). Further cDα
0+x(t) and Iα

0+x(t) are referred
as cDαx(t) and Iαx(t), respectively.

Theorem 2.1. Let y ∈ Cm ([0, b], R) and α, β ∈ (m − 1, m), m ∈ N and x ∈ C1 ([0, b], R).
Then (i) cDαIαx(t) = x(t). (ii) IαIβx(t) = Iα+βx(t). (iii) limt→0+ {cDαy(t)} = limt→0+ {Iαy(t)}.
(iv) limt→0+ {cDαy(t)} = limt→0+ {Iαy(t)}. (v) Iα {cDαy(t)} = y(t)−∑m−1

k=0
y(k)(0)

k! tk.

Proof. Part (i) and (ii) can be shown by using the semigroup properties of the Caputo derivative
and Theorem 3.1 in [22]. For the proof of the last part, the reader is also referred to Theorem
2.22 in [13]. ¤

Proposition 2.1. Let y ∈ C ([0, ∞) , R), n ∈ N and α > 0, β > 0. Then (i) Iα(ty(t)) =
tIαy(t)− αIα+1y(t). (ii) Iα{t Iβy(t)} = tIα+βy(t)− αIα+β+1y(t).
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Proof. (i) can be found in [[17], P. 53] and (ii) is an immediate consequence of (i) and Theorem
2.1 (ii). ¤

Lemma 2.1. (Lemma 2.22 [22]). Let α > 0, then Iα (cDαx(t)) = x(t) + c0 + c1t + c2t
2 + · · ·+

cr−1t
r−1 for some ci ∈ R, i = 0, 1, · · · , r − 1, r = [α] + 1.

3. Existence results

Consider the system of boundary value problem
{

cDαixi(t) = tIγifi (t, xj(t)) + fi (t, xj(t)) , i, j = 1, 2, i 6= j, t ∈ In,

xi(0) = xi
0, and x′i(n) = 0,

(3)

where n ∈ N, γi > 0 and 1 < αi ≤ 2 and fi : [0, ∞) × R −→ R, i = 1, 2 are given continuous
functions.

In this section first, we discuss the system of nonlinear fractional differential equation (3)
which has at least one solution.

Proposition 3.1. Assume that x, y ∈ C ([0, n], R) then the system of boundary value problem
(3a)-(3c), is equivalent the following system of Volterra fractional integral equations

{
xi(t) = −c0 − c1t + tIαi+γifi(t, xj(t))− αiI

αi+γi+1f(t, xj(t)) + Iαfi(t, xj(t)),

i, j = 1, 2, i 6= j.

Proof. By integrating both sides of Eqn. (3) of order αi respectively and using the Proposition
2.6 with together Lemma 1, the lemma is proved. ¤

The next lemma shows that the solvability of the system of boundary value problem (4)-(5)
is equivalent to the solvability of a system of the fractional integral equation.

Lemma 3.1. Assume that fi ∈ C (In × R, R) and consider the linear system of fractional order
differential equation

{
cDαixi(t) = tIγifi(t, xj(t)) + fi(t, xj(t)), i, j = 1, 2, i 6= j,

xi(0) = xi
0, x′i(n) = 0,

(4)

where t ∈ In, 1 < αi ≤ 2. Then xi ∈ C (In, R) , i = 1, 2 is a solution (4) if and only if
xi, i = 1, 2 is a solution of the system of fractional integral equation:




xi(t) = xi(0) +
n∫
0

Gnin(t, s) fi(s, xj(s)) ds,

i, j = 1, 2, i 6= j,

(5)

where Gin(t, s), i = 1, 2 are the Green’s functions and defined by

Gin(t, s) =





t(t−s)αi+γi−1

Γ(αi+γi)
− αi(t−s)αi+γi

Γ(αi+γi+1) + (t−s)αi−1

Γ(αi)
+ Gi(t, s), 0 ≤ s ≤ t ≤ n,

Gi(t, s), 0 ≤ t ≤ s ≤ n.

(6)

where

Gi(t, s) =
−t(n− s)αi+γi−1

Γ(αi + γi)
− n(n− s)αi+γi−2

Γ(αi + γi − 1)
−

+
αit(n− s)αi+γi−1

Γ(αi + γi)
− t(n− s)αi−2

Γ(αi − 1)
, i = 1, 2. (7)
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Proof. Let x1, x2 ∈ C (In, R) be a solution of Eqn. (4). In view of Proposition 2, we have

xi(t) = tIαi+γif(t, xj(t))− αIαi+γi+1f(t, xj(t)) + Iα
i fi(t, xj(t))− c0i − c1it, i 6= j, (8)

for arbitrary constants c0i, ci1, i = 1, 2. By derivation (8) we get

x′i(t) =

t∫

0

{
(t− s)αi+γi−1

Γ(αi + γi)
+

t(t− s)αi+γi−2

Γ(αi + γi − 1)
− (9)

−αi(t− s)αi+γi−1

Γ(αi + γi)
+

(t− s)αi−2

Γ(αi + γi − 1)

}
fi(s, xj(s))ds− c1i,i 6=j. (10)

(11)

Hence using the boundary conditions (4), (8) and (9) we obtain c0i = −xi(0), i = 1, 2 and

c1i =

n∫

0

{
(n− s)αi+γi−1

Γ(αi + γi)
+

n(n− s)αi+γi−2

Γ(αi + γi − 1)
−

−αi(n− s)αi+γi−1

Γ(αi + γi)
+

(n− s)αi−2

Γ(αi + γi − 1)

}
fi(s, xj(s))ds, i 6= j

Substituting values c0i = −xi(0), i = 1, 2 and the above values of c1i, i = 1, 2 into (8) we get

xi(t) = x0 −
n∫

0

{
nt(n− s)αi+γi−1

Γ(αi + γi − 1)
− αit(n− s)αi+γi

Γ(αi + γi)
− t(n− s)αi−2

Γ(αi − 1)

}
fi(s, xj(s)) ds +

+

t∫

0

{
(t− s)αj−1

Γ(α)
+

t(t− s)αj+γj−1

Γ(αj + γj)
− (t− s)αj+γj

Γ(αi + γi + 1)

}
fi(s, xj(s)) ds, (12)

and then

xi(t) = xi(0) +

n∫

t

Gi(t, s)fi(s, xj(s)) ds +

+

t∫

0

{
Gi(t, s) +

(t− s)α−1

Γ(αi)
+

t(t− s)αi+γi−1

Γ(αi + γi)
− αi(t− s)αi+γi

Γ(αi + γi + 1)

}
fi(s, xj(s)) ds =

= xi(0) +

n∫

0

Gin(t, s) fi(s, xj(s)) ds, i, j = 1, 2 and i 6= j,

where Gi(t, s) being as before.
Conversely, suppose that x1, x2 ∈ C (In, R) satisfying in (5), hence x1, x2 satisfying in Eqn.
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(10). By derivation of Eqn. (10) we have,

x′i(t) =

n∫

t

∂Gi(t, s)
∂t

fi(s, xj(s))ds− Gi(t, t− 0) + Gi(t, t− 0)+

+

t∫

0

{
∂Gi(t, s)

dt
+

(t− s)αi−2

Γ(αi − 1)
− (t− s)αi+γi−1

Γ(αi + γi)
+

+
t(t− s)αi+γi−2

Γ(αi + γi − 1)
− α(t− s)αi+γi−1

Γ(αi + γi)

}
fi(s, xj(s))ds =

=

t∫

0

{
(t− s)αi+γi−1

Γ(αi + γi)
+

t(t− s)αi+γi−2

Γ(αi + γi − 1)
− α(t− s)αi+γi−1

Γ(αi + γi)

}
fi(s, xj(s))ds−

−
n∫

0

{
(n− s)αi+γi−1

Γ(αi + γi)
+

(n− s)αi+γi−2

Γ(αi + γi − 1)
− (n− s)αi+γi−1

Γ(αi + γi)

}
fi(s, xj(s))ds +

+

t∫

0

(t− s)αi−2

Γ(αi − 1)
fi(s, xj(s))ds−

n∫

0

(n− s)αi−2

Γ(αi − 1)
fi(s, xj(s))ds, i 6= j.

Thus x′1(n) = 0, x′2(n) = 0 and

cDαixi(t) = cDαi−1x′i(t) = cDαi−1

t∫

0

(t− s)αi−2

Γ(αi − 1)
fi(s, xj(s)) ds +

+ cDαi−1

t∫

0

{
(t− s)αi+γi−1

Γ(αi + γi)
+

t(t− s)αi+γi−2

Γ(αi + γi − 1)
− α(t− s)αi+γi−1

Γ(αi + γi)

}
fi(s, xj(s)) ds =

= cDαi−1
{

I(αi−1)fi(t, xj(t)
}

+ cDαi−1

{
d

dt
[cIαi (t Iαifi(t, xj(t))]

}
=

= fi(t, xj(t)) + tIαifi(t, xj(t)), i, j = 1, 2, i 6= j.

Hence cDαixi(t)− tIγifi(t, xj(t)) = fi(t, xj(t)), i 6= j. The proof is therefore complete. ¤
Remark 3.1. For each t ∈ In, denote functions

gin(t) =

n∫

0

|Gin(t, s)| ds, i = 1, 2.

Then gin are continuous on In and hence are bounded. Let
∗

Gin= max {gin(t) : t ∈ In} , i = 1, 2.

Theorem 3.1. Assume that fi(t, .), i = 1, 2 are continuous on [0, ∞) × R −→ R and there
exist four continuous functions ωi, σi : [0, ∞) −→ R+, i = 1, 2 and nondecreasing such that

(H1): |fi(t, u)| ≤ ωi(t)σi(|u|) for each t ∈ [0, ∞) and u ∈ R,
(H2): There exist two positive constants ri, i = 1, 2 such that

ri ≥ |xi(0)|+ ∗
ωin σi(ri)

∗
Gin, i = 1, 2, (13)

where
∗

ωin= max{ωi(t) : t ∈ In}.
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Then system (1) has at least one solution (x1(t), x2(t)) on [0, ∞) such that |xi(t)| ≤ ri, i = 1, 2.

Before starting the proof of Theorem 3.1 we need to prove the following lemma.

Lemma 3.2. Assume that f1(t, .) and f2(t, .) are continuous on [0, ∞) × R −→ R and there
exist four continuous functions ωi, σi : [0, ∞) −→ R+, i = 1, 2 and nondecreasing such that
(H1)− (H2) are hold.
Let, C = C (In, R) × C (In, R) and Ω = {(x, y) ∈ C : ‖(x, y)‖n < R} where ‖(x1, x2)‖n =
max {‖x1(t)‖n, ‖x2(t)‖n, t ∈ In} and R = max{r1, r2} so that r1, r2 are the constants from
(H2). Consider the operator F : C −→ C defied by

(F (x1, x2)) (t) = ((T1x1)(t), (T2x2)(t)) ,

where

(Tixi)(t) = xi(0) +

n∫

0

Gin(t, s) fi(s, xj(s)) ds, i, j = 1, 2, i 6= j. (14)

Then the following statements are hold. (i) Ω is a closed, convex sub set of C. (ii) F is
continuous. (iii) F maps Ω into a bonded set of C. (iv) F maps Ω into an equicontinuous set
of C. (v) F is completely continuous. (vi) F (Ω) ⊂ Ω.

Proof. (i) is clear so we try to prove (ii). Let {(x1l, y1l)} ∈ C be a sequence such that
{(x1l, y1l)} → (x1, x2) ∈ C and for i = 1, 2, let L = max{‖xil‖ < Li, ‖x1‖ < L3 and
‖x2‖ < L4}, then for each t ∈ In, it is sufficient to show that ‖Tixil−Txi‖n → 0 as l →∞. For
each t ∈ In by (H1) we have

|(T1x1l)(t)− (Tx1)(t)| ≤
n∫

0

|G1n(t, s)||f(s, x1l(s))− f(s, x1(s))| ds ≤

≤
n∫

0

ω1(s)|G1n(t, s)|[σ(|x1l(s)|) + σ(|x1(s)|)] ds ≤

≤ 2
∗

ω1n σ(R)

n∫

0

|G1n(t, s)| ds ≤ 2
∗

G1n σ(R)
∗

ω1n,

where ‖ ∗
ω1n ‖ = max{ |ω1(t)| : t ∈ In}. Thus the Lebesgue dominated convergence theorem

implies that ‖T1x1l − T1x1‖n → 0 as l → ∞. Proving continuity of T2 as similar as proving
continuity of T1 which was done in above.
(iii). Let (x1, x2) ∈ Ω then ‖F (x1, x2)‖n = max{ ‖Tixi‖n, i = 1, 2} and for each t ∈ In and for
i = 1, 2 using (H1) we have

|(Tixi)(t)| ≤ |xi(0)|+
n∫

0

|Gin(t, s)||fi(s, xj(s))| ds ≤

≤ |xi(0)|+
n∫

0

|Gin(t, s)|ωi(s)σi(|xj(s)|) ds ≤

≤ |x(0)|+ ∗
ωin σi(‖xj‖n)

n∫

0

|Gin(t, s)| ds = |xi|(0)+
∗

ωin σi(‖xj‖n)
∗

Gin:= Mi,
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Let M = max{M1, M2 } then ‖F (x1, x2)‖n ≤ M . That is say, F (Ω) is uniformly bounded.
(iv) Since Gin(t, s), i = 1, 2 are continuous on In×In, they are uniformly continuous on In×In.
Thus, for fixed s ∈ In and for any ε > 0, there exists a constant δ > 0, such that any t1, t2 ∈ In

and |t1 − t2| < δ,

|Gin(t1, s)−Gin(t2, s)| < ε

2
√

2nσ(R)
∗

ωin

, i = 1, 2.

Then for i = 1, 2

|(Tix1)(t2)− (Tixi)(t1)| ≤
n∫

0

|Gin(t2, s)−Gin(t1, s)||fi(s, xj(s))| ds <
ε

2
√

2
. (15)

Using (H1), Eqn. (14) and for the Euclidean distance d on R2, we have that if t1, t2 ∈ In are
such that |t1 − t2| < Ω, then

d (F (x1, x2)(t2)− F (x1, x2)(t1)) =

{
2∑

i=1

[(Tixi)(t2)− (Tixi)(t1)]
2

} 1
2

≤

≤
2∑

i=1

|(Tixi)(t2)− (Tixi)(t1)| < ε.

That is say, F (Ω) is equicontinuous.
(v) It is a consequence of (i)− (iii) together with Theorem 2.1 Arzela-Ascoli Theorem.
(iv). Let (x1, x2) ∈ Ω, that is ‖(x1, x2)‖n < R with R = min{r1, r2}. We prove that
F (x1, x2) ∈ Ω. For each t ∈ In and using (H1)− (H2) we have

‖F (x1, x2)‖n = max{ ‖Tixi‖n, i = 1, 2} ≤

≤ max



|xi(0)|+

n∫

0

|Gin(t, s)||fi(s, xj(s))|ds, i = 1, 2



 ≤

≤ max
{

∗
ωin σ(‖xi‖n)

∗
Gin, i = 1, 2

}
≤ max{r1, r2} = R.

We complete the proof of Lemma 3. ¤

Proof of Theorem 3.1. Necessary conditions of Schauder’s fixed point theorem for the operator
F : C −→ C was obtained in Lemma 3, therefore F has fixed points (x1n, x2n) in Ω, hence by
Lemma 2, the fixed points of F are solutions the system of boundary value problem:

{
cDαixi(t) = Iγifi (t, xj(t)) + fi (t, xj(t)) , t ∈ In, 1 < αi ≤ 2, i, j = 1, 2, i 6= j,

xi(0) = xi0, x′i(n) = 0.
(16)

Using diagonalization process, we prove the system (1) has a bounded solution on [0, ∞).
For k ∈ N, assume that (x1k, x2k) be a solution of the boundary value problem (15) on [0, nk]

and {nk}k ∈
∗
N is a sequence satisfying 0 < n1 < n2 < · · · < nk < · · · ↑ ∞. Let

(X1k(t), X2k(t)) =





(x1k(t), x2k(t)) , t ∈ [0, nk],

(x1(nk), x2(nk)) , t ∈ [nk, ∞).

(17)
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If we consider S = {(X1k, X2k), k = 1, 2, · · · } then for each t ∈ [0, n1] and k ∈ N we have

‖(X1k, X2k)‖ = max {‖X1k‖, ‖X2k‖}
= max {max{ |xik(t)| : t ∈ [0, n1]}, i = 1, 2}
= max {‖x1k‖, ‖x2k‖} ≤ max{r1, r2} = R,

and

Xink
(t) = xi(0) +

n1∫

0

Gin1(t, s) fi(s, Xjnk
(s)) ds, i, j = 1, 2, i 6= j. (18)

Thus, for each t, τ ∈ [0, n1] and k ∈ N, from system (17) and by (H1)− (H2) we get

|Xink
(t)−Xink

(τ)| ≤ λ1

n1∫

0

[Gin1(t, s)−Gin1(τ, s)] ds, i = 1, 2,

where λ1 = max{ ∗
ωi1 σi(ri), i = 1, 2}. Hence the Arzela-Ascoli Theorem guarantees that there

is a subsequence N1 of N and tow functions u1, v1 ∈ C([0, n1], R) such that (Xnk
, Ynk

) →
(u1, v1) ∈ C([0, n1], R) as k →∞ through N1.

Let
∗
N1= N1 − {1}. Notice that ‖(X1nk

, X2nk
)‖ ≤ R for each t ∈ [0, n2] and k ∈ N. With

repetition of the above process on interval [0, n2], that is for each t ∈ [0, n2] and k ∈ N from
system (17) and by (H1)− (H2) we have

|Xink
(t)−Xink

(τ)| ≤ λ2

n2∫

0

[Gin1(t, s)−Gin1(τ, s)] ds, i = 1, 2,

where λ2 = max{ ∗
ωi2 σi(ri), i = 1, 2}. Hence the Arzela-Ascoli Theorem guarantees that there

is a subsequence N2 of
∗
N1 and tow functions u2, v2 ∈ C([0, n2], R) such that (X1nk

, X2nk
) →

(u2, v2) ∈ C([0, n2], R) as k → ∞ through N2. It is clear that (u1(t), v1(t)) = (u2(t), v2(t))

for each t ∈ [0, n1], as N2 ⊆
∗
N1.

Let
∗
N2= N2−{2}. Proceed inductively to obtain for m ∈ {3, 4, · · · } a subsequence Nm of

∗
Nm−1

and tow functions um, vm ∈ C([0, nm], R) such that (X1nk
, X2nk

) → (um, vm) ∈ C([0, nm], R)
as k →∞ through Nm.

Let
∗
Nm= Nm − {m}. We define two functions x1, x2 on (0, ∞) as follows.

Fix t ∈ (0, ∞) and let m ∈ N with s ≤ nm. Then define x1(t) = X1m(t) and x2(t) = X2m(t).
Then x1, x2 ∈ C([0, ∞), R), x1(0) = x10, x2(0) = x20 and |x1(t)| ≤ R, |x2(t)| ≤ R for

t ∈ [0, ∞). Again fix t ∈ [0, ∞) and let m ∈ N with s ≤ nm. Then for n ∈
∗
Nm we have

Xink
(t) = xi(0) +

nm∫

0

Ginm(t, s) fi(s, Xjnk
(s)) ds, i, j = 1, 2, i 6= j.

Let nk →∞, through
∗
Nm to obtain

Xim(t) = xi(0) +

nm∫

0

Ginm(τ, s) fi(s, Xjm(s)) ds, i, j = 1, 2, i 6= j,
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that is

xi(t) = xi(0) +

nm∫

0

Gim(τ, s) fi(s, xj(s)) ds, i = 1, 2, i 6= j.

We can use this method for each τ ∈ [0, nm], and for each m ∈ N. Thus
cDαixi(t) = Iγifi (t, xj(t)) + fi (t, xj(t)) , t ∈ [0, nm], i = 1, 2, i 6= j.

for each m ∈ N and αi ∈ (1, 2] and the constructed functions x1, x2 are a solution of system
(1). This completes the proof of the theorem.

Example 3.1. Consider a coupled system of non-linear fractional integro-differential equations
with initial conditions as follows:




cD
3
2 xi(t)− tI

1
2

(
3
√

xj(t)

1+t2

)
=

3
√

xj(t)

1+t2
, t > 0, i = 1, 2, i 6= j.

xi(0) = 1 and xi(t) are bounded on [0, ∞).

Here,

f1(t, u) =
3
√

u

1 + t2
, ω1(t) =

1
1 + t2

, σ1(u) = 3
√

u

f2(t, u) =
√

u

1 + et
, ω2(u) =

1
1 + et

, σ2(u) =
√

u,

f and g are continuous for each (t, u) ∈ [0, ∞)×R. Four functions ω, σ, η and µ are continuous
on [0, ∞) and satisfying in (H1), that is |fi(t, u)| ≤ ωi(t)σi(|u|), i = 1, 2 for each t ∈ [0, ∞)
and u ∈ R. We have

∗
ω1n= sup{ω1(t) : t ∈ In} = 1 and

∗
ω2n= sup{ω2(t) : t ∈ In} = 1

2 . The
Green’s functions for this example, by Eqn. (6) we get

G1n(t, s)ds =





t(t− s)− α(t−s)2

2 +
√

t−s
Γ(3/2) + G1(t, s), 0 ≤ s ≤ t ≤ n

G1(t, s), 0 ≤ t ≤ s ≤ n,

where

G1(t, s) = (α1 − 1)t(n− s)− n− t

Γ(1/2)
√

n− s

Hence
∗

G1n= sup
{

n∫
0

|G1n(t, s)| ds, t ∈ In

}
is exist. Since

lim
M→∞

M

1+
∗

ω1n σ1(M)
∗

G1n

= lim
M→∞

M

σ1(M)
= lim

M→∞
M
3
√

M
= ∞,

then there exist r1 > 0 such that
r1

1+
∗

ω1n σ1(r1)
∗

G1n

≥ 1.

On other hand, Eqn. (6) yields

G2n(t, s) =





t(t−s)
2
3

Γ( 5
3
)
− α2(t−s)

5
3

Γ( 8
3
)

+ (t−s)
1
3

Γ( 4
3
)

+ G2(t, s), 0 ≤ s ≤ t ≤ n,

G2(t, s), 0 ≤ t ≤ s ≤ n,
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where

G2(t, s) =
−t(n− s)

2
3

Γ
(

5
3

) − n(n− s)
−1
3

Γ
(

2
3

) +
2t(n− s)

2
3

Γ
(

5
3

) − t(n− s)−
2
3

Γ
(−1

4

) .

Hence
∗

G2n= sup
{

n∫
0

|G2n(t, s)| ds

}
is exist. Since

lim
N→∞

N

1+
∗

ω2n σ2(N)
∗

G2n

= lim
M→∞

N

σ2(N)
= lim

M→∞
N√
N

= ∞.

Then there exist r2 > 0 such that
r2

1+
∗

ω2n σ1(r2)
∗

G2n

≥ 1.

Hence this example is satisfying in (H2). Therefore by Theorem 3.1 the system of this example
has a bounded solution (x1, x2) ∈ Ω ⊆ C.
Remark 3.2. Proposition 2.1 rm(i) can be generalized, that is if p is nonnegative integer, then
[5, P. 53]

Iα(tpy(t)) =
p∑

k=0

(−α

k

) [
D(k)tn

] [
Iα+ky(t)

]
=

p∑

k=0

(−α

k

)
Γ(p + 1)tp−k

Γ(p− k + 1)
Iα+ky(t).

Hence, using Theorem 2.5 rm(ii) the above equation yields

Iα
{

tpIβy(t)
}

=
p∑

k=0

(−α

k

)
Γ(p + 1)tp−k

Γ(p− k + 1)
Iα+β+ky(t),

where, (−α

k

)
= (−1)k × α(α + 1) · · · (α + k − 1)

k!
= (−1)k × Γ(α + k)

k! Γ(α)
.

Therefore we can prove that the system of nonlinear fractional differential equation:
{

cDαix(t) = tpiIγifi (t, xj(t)) + fi (t, xj(t)) , t > 0, i = 1, 2, i 6= j,

xi(0) = xi0 and xi(t) are bounded on [0, ∞),

which under conditions (H1) and (H2) has at least one bounded solution on [0, ∞), where
p1, p2 are nonnegative integers.

4. Conclusions

The existence of solutions for the nonlinear fractional integro-differential equations with initial
conditions comprising standard Caputo fractional derivative have been discussed in C([0, +∞),R).
In order to obtain the results in this article the diagonalization method had important role. Al-
though the present study provides some insights in the equations encountered in the global
existence solutions, this existence theorem may be explored for other classes of fractional differ-
ential equations which encounter in the global existence solutions.
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